We have over 2500 users of this reliable common platform.
Stabilized image quality provided by excellent chassis design
Direct CMOS Sensor

Cross Metal Frame

Beautiful Algorithm Engine
Direct CMOS Sensor
Adopting high-definition CMOS sensor
Super intelligent detector & high speed reconfigurable processor actualize high-definition image with lower dosage and lower noise.
Direct CMOS Sensor
Adopting high definition CMOS sensor

Super intelligent detector & high speed reconfigurable processor actualize high-definition image with lower dosage and lower noise.

Construct the most superior image from as many as 4500 images.
16 bit Image with excellent clarity and high definition
Cross Metal Frame

Accumulated know-how over the years create robust and best suited frame. A sense of stability of the frame enables highly accurate diagnosis without blur.
Beautiful Algorithm Engine
Smooth and accurate arm movement is actualized by refined algorithm, illustrating the optimum panoramic orbit.
High speed exposure, 8-second Panoramic

By minimizing the exposure time, patient dose is also minimized.

Results in less risk of radiographic failure, this feature provides advantages for child radiophotography especially.

Compare to the conventional radiography, patient dose can be minimized by up to 50%. (comparison made between YOSHIDA equipment)
User can select the exposure time best suited for each patient and clinical needs.

Even 8-second exposure provides high image quality optimal for accurate clinical diagnosis.
Multifocal Layer Technology and autofocus technology show the most optimum tomographic image reducing the need for re-capturing of the image.
Multifocal Layer Technology - Active tomography

Provides unique adjustment features to correspond to the individual size and shape of arches.

Example: Wide arch

- Ideal “in focus” position of focal layer
- Form of focal layer which requires adjustment
- Adjustable range

Adjustment to optimum size and shape of the focal layer can be easily made even after the exposure.

Size can be selected from Small, Normal, Large
Shape can be selected from Narrow, Normal, Wide
Multifocal Layer Technology - Active tomography

Provides unique adjustment features to correspond to the individual size and shapes of arches.

Easy correction of positioning error

Radiographic failure caused by incorrect patient positioning can easily be corrected after exposure by using the unique adjustment feature, providing excellent panoramic image.
Multifocal Layer Technology -Autofocus

Autofocus function automatically adjusts the image quality even in case of positioning failure.
Multifocal Layer Technology - Autofocus

Autofocus function automatically adjusts the image quality even in case of positioning failure.
Modality Output & Active tomography

You will have the freedom to choose any viewer. Adapting TWAIN, seamless diagnosis can be made with the viewer you are accustomed to.
High-definition and diverse image capturing modes

Panoramic, TMJ 2-divisions, Cephalo (PA, LA), Carpus (Optional)
The world’s most compact 3D

Designed for space efficiency, compact chassis gives user the benefit to utilize the space effectively
W FOV MODE

Two methods of 3D image capturing modes are featured to provide the efficiency of capturing the image of specified portion. Minimizing patient dose is always our concern.

- **3D Single Acquisition Mode**
 - Capturing range: Approx. Φ6cm × 4cm

- **3D Recipro Acquisition Mode**
 - Capturing range: Approx. Φ9cm × 4cm

Image for reference only
3D Single Acquisition MODE image capturing principles

1. Starting image capturing

2. Image capturing of 190° rotation
3D Recipro Acquisition MODE image capturing principles

1. Starting image capturing
2. Clockwise image capturing
3. 3D sensor slide
4. Anti-clockwise image capturing
The world’s smallest voxel size 3D
Slice pitch of 0.068 mm is realized for the image of cross-sectional area

Voxel size : 68 μm
Voxel size : 100 μm
3D unit

Coming soon
SPS ~Stress-free Positioning System~
Precise positioning using impression material enables accurate setting.

- Setting up for positioning can be done at chair side
Panoura’s Bite-Plate Positioning enables accurate image capturing of targeted spot

Panoura’s Bite-Plate Positioning enables patient stability, and it reduces motion-artifact

It is possible to capture images from the same angle before and after the operation by using the same Bite-Plate.

Thus, the images can be used to measure the chronological changes effectively
Lower radiation exposure

Medical CT Dental CT Panoura 18S
Upgradable

From Panoramic to Panoramic +3D
Additionally, upgrading to Cephalometric can be accommodated.
Panoura 18S can be upgraded to the mode suitable for your treatment.
For smoother image capturing

Easy-to-view exposure lamp
Wide exposure lamp is located on the front for easy view. You can easily confirm the exposure lamp from the outside of the X-ray room.

Easy entry for patients
Arm moves automatically for easy entry and exit for patients.

Safe up/down motor
Reduced noise, the low vibration, and the slow start/stop control were enabled by a highly efficient up-and-down motor. It helps to ease patient’s stress.
For smoother image capturing

Support grip
Support grip keeps patient position stable, thus it reduces patient’s stress

Cross-sectional image capturing
Control switch enables precise positioning of camera to capture the targeted cross-sectional area without having patient adjust their position back and forth

3-point head support
The built-in sensor inside the head support holds patient’s head in place while measuring the thickness of the head and automatically sets the appropriate tube voltage.

Setting the image capturing condition
Image capturing conditions can be set by the computer outside the X-ray room as well as using the Panoura control panel.
COMMON (Panoramic, Cephalo)

<table>
<thead>
<tr>
<th>Product name</th>
<th>Panoura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>18S</td>
</tr>
<tr>
<td>High-voltage generator</td>
<td>DC (prior ignition type)</td>
</tr>
<tr>
<td>Focal spot</td>
<td>0.5mm x 0.5mm</td>
</tr>
<tr>
<td>X-ray tube cooling method</td>
<td>Oil cooling</td>
</tr>
<tr>
<td>Tube Voltage</td>
<td>58,60,63,65,68,71,73,76,79,82kV</td>
</tr>
<tr>
<td>Tube Current</td>
<td>2.0,2.5,3.2,4.0,5.0,6.3,8.0,10mA</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>1:40</td>
</tr>
<tr>
<td>Power supply</td>
<td>AC100V - 120V, AC220V - 240V 50Hz/60Hz</td>
</tr>
<tr>
<td>Input</td>
<td>2.0kVA</td>
</tr>
<tr>
<td>Classification</td>
<td>Class I, Type B</td>
</tr>
<tr>
<td>Usable life</td>
<td>10 years (when prescribed maintenance and inspections are performed)</td>
</tr>
</tbody>
</table>
| Operating environment | Temperature 10 to 40°C
Relative humidity 30 to 75% (no condensation)
Atmospheric pressure 700 to 1060hPa |
| Viewer software (Panorama & Cephalo) | Panoramic and Cephalo : Various types of viewer software can be used with TWAIN interface. |
Panoramic

<table>
<thead>
<tr>
<th>Sensor</th>
<th>CMOS sensor (Flat panel detector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel size</td>
<td>100 μm</td>
</tr>
</tbody>
</table>

Data size per one Panorama view	About 900MB
Data transfer time	real time
Preview mode	Yes
Data Bit (Gray scale)	16bit
Special function	Multi layer function
Exposure time	Panorama 8sec, 14sec, 16sec, Child : 6.4sec, 11.2sec, 12.8sec, TMJ 4sec x 2
Program mode	Panorama, Child, TMJ
SID	485mm
SOD	350mm

Cephalometric

<table>
<thead>
<tr>
<th>Sensor</th>
<th>CMOS sensor (Flat panel detector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel size</td>
<td>100 μm</td>
</tr>
</tbody>
</table>

Data size per one Panorama view	About 900MB
Active area	226.6mm x 6.4mm
Exposure time	8sec, 10sec
Special function	NONE
Program mode	LA, AP, PA, Carpus
SID	1650mm
SOD	1500mm

3D (Coming soon)

<table>
<thead>
<tr>
<th>sensor</th>
<th>CMOS sensor (Flat panel detector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>voxel size</td>
<td>68μm</td>
</tr>
</tbody>
</table>

Volume size (FOB)	About D60mm x H37mm, About D90mm x H35mm
Voxel size (Slice Pitch)	About 72μm(D60mm x H37mm) or 68μm(D90mm x H35mm)
Data size per 3D view	About 300MB
Viewer software	It is possible to use several kinds of viewer software by DICOM data output.
Recon time	Under 1 minute
Exposure time	11.5sec(D60mm x H37mm), 23 sec(D90mm x H35mm)
Scan time (Rotation time)	18sec(D60mm x H37mm), 44 sec(D90mm x H35mm)
Rotation Unit Scan Angle	190 degree
Recommended PC specification

(1) CPU : Intel Core2 Duo 3.0GHz or more
(2) RAM : DDR3 2GB or more
(3) HDD : 80GB or more
(4) Monitor : True Color (24bit RGB), SXGA (1280 × 1024) or more resolution
(5) Network : Dedicated Gigabit Intel/3Com/Marvel chipset
(6) OS : Microsoft Windows XP SP3, Microsoft Windows 7 SP1 *Microsoft Windows Vista is not supported